
SecNiche Whitepaper

Evading Web XSS Filters through Word
(Microsoft Office and Open Office) in

Enterprise Web Applications

 Date: 11 March 2009

__

 Aditya K Sood, http://www.secniche.com | http://www.secniche.org | adi_ks [at] secniche.org

2009 All Rights Reserved. SecNiche makes no representation or warranties, either express or implied by
or with respect to anything in this document, and shall not be liable for any implied warranties of
merchantability or fitness for a particular purpose or for any indirect special or consequential damages.
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form
or by any means, photocopying, recording or otherwise, without prior written consent of SecNiche. While
every precaution has been taken in the preparation of this publication, this publication and features
described herein are subject to change without notice.

Evading Web XSS Filters through MS Word

1

SecNiche Whitepaper

Abstract

This paper sheds light on the hyper linking issues observed during penetration testing of web based

enterprise applications. This concept can be used to bypass standard XSS filters by creating a malicious

Microsoft word document. The inline hyper linking with malicious code subverts the enterprise web

application XSS filters (while conversion mechanism) when rendering is done in the context of browsers.

As the code base is structured in a hierarchical manner, we will be laying stress on the vendor based

applications. The web XSS filters present in the enterprise web application are not designed

appropriately to trace the injection parameters. Numbers of vendors have been intimated against this

XSS vector. This can also be used to launch other variants of XSS including Cross Site Request forging

and Remote File Inclusion attacks. It works efficiently in most number of cases. The risk factor and

feasibility depends on the ease of victim interacting with the enterprise web application. The attack

vector works efficiently with Microsoft word and Open Office. But for discussion in detail we will be

considering Microsoft Office Word.

Evading Web XSS Filters through MS Word

2

SecNiche Whitepaper

Description:

The enterprise web applications allow uploading of Microsoft word document on the web server based on

the requirements. It has been noticed that certain vendors allow the content of these Microsoft word

documents to be rendered into the browser as a part of functionality in an application. For example:

loading your resume in a word document on the web server. It can be opened in the application context

to view the information. It has been detected that the transformation of content from the Microsoft

document file is not properly filtered and malicious operations are allowed on the browser surface when

the content is rendered. We will understand the behavior of Microsoft word document while handling

hyper links. The behavior of Microsoft word is generic when a hyperlink is clicked directly. When a

request is made through office, then a file is downloaded directly through browser (default internet

explorer).

As we know, any content not mapped according to the structure defined, is undertaken as HTML by

browser, It has been critically examined that Microsoft has applied proper security measures when a

document is opened from website in the native Microsoft office software. But previewing the contents of

Microsoft word document file directly in the browser is more of HTML. If an appropriate filter is not

applied in the enterprise software, then malicious operations can be done with an ease.

The problems are identified and structured as:

The enterprise software does not use inline filtering technique to scrutinize the URL passed in the

Microsoft word document for standard injection blacklists, when content is transformed. Malicious

designed JavaScript which is passed as a hyperlink in the word document does the trick for the

attackers.

Two specific cases arise in this:

1. When the content in the Microsoft word Document is rendered (conversion from doc to html) as

HTML directly in the browsers.

2. When the content is rendered in the proprietary base software using a web browser.

The hyperlinks in Microsoft word are opened through web authoring protocol directly in the web browser,

mainly in the read only format. It depends on the specification provided in the web server configuration

and the type of request issued pointing to the required document. The SAVE-AS option allows you to

save the file directly on the system base. As per the RFC 2616 HTTP/1.1 allows HTTP method OPTIONS

which is used to set different options on the web resource. It defines the command and the type of

request to be received by the server on the specific folder where the document or resource is placed. So

opening a Microsoft word document in web browser requires certain steps to be covered by the Microsoft

Office software through Office Discovery Protocol. The standard requirement and procedures are listed

below as:

1.) The Web Authoring Protocol.

2.) Web Server issuing the request and the Authentication mechanism to be followed.

3.) The request methods in use and specification provided on the resource.

4.) Access methods deployed to use that resource.

5.) Time check covering the Expiration Time.

These are the certain methods which Office requires to complete the loading and viewing of the

document in the browser. Once the hyperlink is clicked from a browser (Internet Explorer) the URLMON

Evading Web XSS Filters through MS Word

3

SecNiche Whitepaper

finds a resource and downloads the content directly. The URLMON checks the HTTP header, Content-

Type, CLSID to find the content type. Once it is done, an OLE object is created through IPersistMoniker.

The new HLINK object is generated pointing to the resource through IPersistMoniker and the file is

displayed to the user.

From the security perspective, the same policies and ingrained security mechanisms are applied as the

base software.

The Hlink.dll plays a critical role in executing a hyperlink that works for any Microsoft Word Document.

To maintain the integrity, there is a secondary check introduced by Microsoft even if the hyperlink

security warning is disabled in the registry. So that’s how the actual functioning works in hyperlink

execution. But our scope is wider than this. The problem actually starts from here. The functionality of

editing, creating hyperlinks diversifies the attack pattern in enterprise web application when a word

document is rendered directly in web browsers. This trick comes handy in manipulating the word

functionality in order to hit the web application.

The problem is not with Microsoft Word document but using it as a carrier to bypass the XSS filters

through malicious hyper linking by inserting XSS checks. This type of attack vector requires a third party

carrier to trigger the attack efficiently. If we reverse the order, then problem is present in the Hyperlink

Integrity Checkers applied in the web applications. We will discuss a real example for injecting XSS,

CSRF etc. in an enterprise web application. The filters for checking of Meta characters and injection

parameters work efficiently in those applications, but at the same time fail to instantiate the XSS

injected into hyperlinks during content conversion directly into the web browser. It means the publicly

available and enterprise web application conversion components trust all the Microsoft word documents

as flawless and execute the action. This is not right as even the content needs to be traversed especially

hyperlinks (XSS driven) whether the JavaScript call has been made through it or not.

Microsoft provides a generic option of editing hyperlinks. It proves beneficial to the attackers for

designing malicious hyperlinks with inline XSS parameters into it. Due to applied security, if an attacker

passes parameter including Meta characters such as (<>), the hyperlink is appended to the URI which

points to that file in a web server. As a result, the overall URL becomes the URI appended with

hyperlink path which does not work and shows the sign of intrusion or injection. Let’s see:

Evading Web XSS Filters through MS Word

4

SecNiche Whitepaper

The lower pane in the Microsoft word document shows the hyperlink address that is interpreted by the

software itself. It shows the behavior as discussed above. In order to inject the right parameter, we

need to make injections inline so that the hyperlinks show only JavaScript code rather than the links.

Generally, when this link is executed you will find the under mentioned error as a response:

So the hyper link does not work. By default, Microsoft word always tries to download the contents

pointed by the hyperlink. In order to set the hyper linking for injections, one has to make it inline. Let

see:

Now the parameters passed for injection are inline. There can be two checks that are produced by

security mechanism in Microsoft word as:

1. If DisableHyperlinkWarning is not set, you will get a security check as:

2. If DisableHyperlinkWarning is set, the Microsoft word tries to download the file directly or

produces a trusted check as structured in HLINK.dll.

Evading Web XSS Filters through MS Word

5

SecNiche Whitepaper

The hyperlink is working; the internet explorer tries to download the file as per the default behavior of

Microsoft word. At this point of time, we are sure that our malicious link is injected properly in the

Microsoft word document and is working fine.

Microsoft released an advisory http://secunia.com/advisories/32138/ explaining the direct XSS occurring

in the word through CDO URI parameter. This vulnerability is incessantly software driven. The XSS is

produced when a document is directly downloaded from the web server in the browser.

Our aim is to make the XSS persistent through malicious hyper linking in the Microsoft word document.

The file remains on the web server and when an owner renders it in a browser to view the content, the

injection occurs. The next test is to upload the malicious word file into the enterprise web application.

We will discuss this in next section.

Now, we are ready with our malicious word document. The document will be uploaded into the

enterprise web application on the server. We have taken a real world example, but due to legal and

responsible disclosure concerns, we will not be pointing out the details of the web application. Let’s

have a look at the normal conversion mechanism from doc to html.

The transformation occurs as structured above. Let’s see how the transformation occurs from malicious

word document to html. The word document was designed as:

Evading Web XSS Filters through MS Word

6

http://secunia.com/advisories/32138/

SecNiche Whitepaper

When the document was converted to html and previewed in the context of enterprise web application it

looked as:

The malicious hyperlinks were rendered in the application. When we clicked the above specified link in

the enterprise web application, we successfully produced XSS.

Evading Web XSS Filters through MS Word

7

SecNiche Whitepaper

The alert box was displayed as a positive outcome of the injected link.

The cookie was extracted. We conducted another test to check the cross site request forging. This

worked even better in the context of running enterprise web application.

Another malicious document was created with a forged XSRF request.

Evading Web XSS Filters through MS Word

8

SecNiche Whitepaper

We encountered the following structured output which clearly represented the cross site request forging

attack.

This injection occurred through document.writeln JavaScript call to execute the forged request. So we

have noticed the impact of this kind of attack on the web applications. No doubt it’s an obscure way of

producing XSS but it results in real attack and stealing of information.

Evading Web XSS Filters through MS Word

9

SecNiche Whitepaper

Conclusion:

The XSS contains a randomized vector of attack, as we have seen in the past about different variants of

cross site scripting attacks. These types of attacks help the penetration testers to scrutinize the designed

filters against the XSS. In addition, it also checks the vulnerability persisting due to insecure coding and

inappropriate web application design in the application. These types of attacks require a kind of carrier

(in this case Microsoft Word) to pass the injection parameters to the target. The attack vector is

successful in triggering this type of behavior in a number of web enterprise web applications. This helps

the tester to go through every single component of web application to trace the hidden vectors of XSS

exploitation.

Thanks:

I would like to thank Mr. Jeremiah Grossman (WhitehatSec) and Johnny Long (iHackStuff) for the

discussions and feedback in polishing this paper.

Evading Web XSS Filters through MS Word

10

SecNiche Whitepaper

References:

1. www.scanit.be/uploads/php-file-upload.pdf

2. https://www.owasp.org/index.php/Unrestricted_File_Upload

3. http://technet.microsoft.com

4. http://ha.ckers.org/blog/20061215/csrf-with-word-part-ii/

5. http://michaeldaw.org/md-hacks/csrf-with-msword/

Evading Web XSS Filters through MS Word

11

http://www.scanit.be/uploads/php-file-upload.pdf
https://www.owasp.org/index.php/Unrestricted_File_Upload
http://technet.microsoft.com/
http://ha.ckers.org/blog/20061215/csrf-with-word-part-ii/
http://michaeldaw.org/md-hacks/csrf-with-msword/

SecNiche Whitepaper

We have tested this functionality on certain number of Web based editors and found different

behaviors as explained in the appendix.

Appendix 1 – ZOHO Writer

It does not filter the hyperlinks and injection is possible.

Evading Web XSS Filters through MS Word

12

SecNiche Whitepaper

Appendix 2: Microsoft Office Live Workspace

The Live Office does not allow the link to be processed directly from the browser.

Evading Web XSS Filters through MS Word

13

SecNiche Whitepaper

Evading Web XSS Filters through MS Word

14

Appendix 3: Google Docs

Google docs add an extra check(Go to Link) while conversion of document.

